#Example_333 Heating of a cast iron furnace wall fem #Set the FEM environment fem define nodes;r;furnace;example #Read in the nodes to define a furnace wall fem define window;c #Calculate the window size fem define bases;r;;example #Defines a bilinear basis function fem define elements;r;;example #Read in the elements to define a furnace wall fem draw line #Draw the lines fem define equation;p #Define a TIME INTEGRATION analysis of # ! the ADVECTION-DIFFUSION equation # ! using GALERKIN FINITE ELEMENTS with # ! LINEAR ANALYSIS. Default all other options. # ! Note that the advection-diffusion equation # ! in CMISS is of the form # ! s. del T/del t + u. grad T = # ! D_i. del^2 T/del x_i^2 + a + b.T # ! where a is the constant source term, b # ! is the linear source term, s the storage # ! coefficient, D_i the diffusion coefficients # ! (in each direction) and u the velocity # ! vector (mass flow in each direction). # ! The heat equation is, on the other hand, of # ! the form 1/alpha. del T/del t = # ! del^2 T/del x_i^2 where alpha is the thermal # ! diffusivity and is equal to k/(rho.C) where # ! k is the thermal conductivity, rho the # ! density and C the specific heat. fem define material;p #Define material properties. Comparing the # ! advection-diffusion equation with the heat # ! equation (above) we can make the # ! advection-diffusion equation govern the # ! heat flow in the cast iron wall by setting # ! both the constant and linear source terms # ! to zero, the storage coefficient to be # ! 1/alpha (= 6.585 s/cm^2 because # ! 1/alpha=65850 s/m^2 for grey cast iron, # ! however the wall is only 1 cm thick), # ! the diffusion coefficients to be 1, # ! and the mass flows zero. (Default the rest). fem define initial;p #Define the initial conditions. The initial # ! solution is zero. Set Nodes 1 and 7 to # ! zero degrees C and nodes 6 and 12 to 1000 # ! degrees C. fem define solve;p #Defines solver options. Default all options # ! except set the final time to 3 seconds and # ! the time increment to 0.1 seconds. fem solve #Solve the time integration problem fem display history #Display the nodal time history. fem draw field animate #Show the temperature field over time. You # ! want to ensure that the spectrum in the # ! GX window #1 is set to Light to Dark. # ! Note this may take a little while.
Name Modified Size
example_333.com 02-Mar-2005 3.6k furnace.com 10-Apr-2000 118 furnace.ipbase 10-Apr-2000 1.1k furnace.ipelem 10-Apr-2000 1.4k furnace.ipequa 26-May-2003 1.2k furnace.ipequa.old 18-Jun-2002 1.2k furnace.ipinit 10-Apr-2000 762 furnace.ipmate 07-Apr-2003 2.6k furnace.ipmate.old 10-Apr-2000 2.0k furnace.ipnode 10-Apr-2000 1.8k furnace.ipsolv 13-Apr-2007 1.7k timedep4.iphist 10-Apr-2000 45k
Name Modified Size
examples_3_33_333.tar.gz 14-Apr-2007 9.2k
Html last generated: Sun Mar 6 05:50:17 2016
Input last modified: Fri Apr 13 10:32:31 2007